Exercise 10

Verify the given linear approximation at $a=0$. Then determine the values of x for which the linear approximation is accurate to within 0.1.

$$
e^{x} \cos x \approx 1+x
$$

Solution

Plugging in $x=0$ to the function yields $e^{0} \cos 0=1$, so $(0,1)$ is the point on the curve that the tangent line goes through. Taking the derivative of the function yields

$$
\frac{d}{d x}\left(e^{x} \cos x\right)=\left[\frac{d}{d x}\left(e^{x}\right)\right] \cos x+e^{x}\left[\frac{d}{d x}(\cos x)\right]=\left(e^{x}\right) \cos x+e^{x}(-\sin x)=e^{x}(\cos x-\sin x) .
$$

Set $x=0$ to get the slope of the tangent line.

$$
\left.\frac{d}{d x}\left(e^{x} \cos x\right)\right|_{x=0}=e^{0}(\cos 0-\sin 0)=1
$$

Use the point-slope formula to get the equation of this line.

$$
\begin{gathered}
y-1=1(x-0) \\
y-1=x \\
y=x+1
\end{gathered}
$$

As a result, the linearization to $e^{x} \cos x$ at 0 is

$$
L(x)=x+1 .
$$

Now find the values of x for which the linear approximation is accurate to within 0.1.

$$
\begin{gathered}
\left|e^{x} \cos x-(x+1)\right|<0.1 \\
\left|(x+1)-e^{x} \cos x\right|<0.1 \\
-0.1<(x+1)-e^{x} \cos x<0.1 \\
-0.1+e^{x} \cos x<x+1<0.1+e^{x} \cos x
\end{gathered}
$$

Plot each of these functions versus x.

The linear approximation stays between the curves for

$$
-0.762997<x<0.607248 .
$$

This is the interval that the linear approximation is accurate to within 0.1.

